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Secondary instability in rotating channel flow
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Experiments on rotating channel flow, where both the primary (induced by a Coriolis
instability) and the secondary instability are triggered independently, are described,
focusing on the development of a secondary instability consisting of high-frequency
travelling waves and their subsequent breakdown. Detailed hot-wire velocity mea-
surements of the secondary disturbance are made and the phase speed and growth
rate for various frequencies are determined. It is shown that the frequency of highest
growth rate is close to that which is observed for naturally developing flow. Some
information on the later stages in the transition process is obtained from frequency
spectra, which show that interaction between various modes gives rise to stochas-
tic low-frequency disturbances, which may play an important role in the transition
process. A theoretical model of the disturbance structure is described which is used
to explain some of the measured results and also allows the determination of the
disturbance cross-stream flow field from only streamwise velocity measurements.

1. Introduction
A classical scenario of transition to turbulence consists of growth of a primary

instability followed by a secondary instability, which gives rise to further nonlinear
interactions towards a complicated or chaotic state which develops into turbulence.
The primary instability is in most cases well understood and can, in the linear stage,
be described by classical hydrodynamic stability theory. In flows where the primary
instability consists of stationary roll cell disturbances (such as the Taylor–Couette,
curved or rotating channel flow) the secondary instability can take the form of
streamwise travelling waves. On the other hand in flat-plate boundary layer transi-
tion, where the primary instability consists of two-dimensional Tollmien–Schlichting
(TS) waves, the secondary instability manifests itself through the development of
three-dimensionality of the TS-waves. Klebanoff, Sargent & Tidstrom (1962) con-
trolled the three-dimensionality by attaching regularly distributed roughness elements
in the spanwise direction which led to the so-called K-breakdown scenario. Later
experiments have used one two-dimensional wave and a pair of oblique waves to
study both K-breakdown and subharmonic breakdown under controlled conditions
(see for instance Corke & Mangano 1988).

However for travelling wave type secondary instability developing on a stationary
primary disturbance no physical experiment has been performed where the time-
dependent secondary instability has been triggered in a controlled manner (except for
a few results presented by Swearingen & Blackwelder 1987 for Görtler flow). In direct
numerical simulations (DNS) on the other hand this type of secondary instability
has been analysed by introducing a small disturbance of a certain wavelength and
studying its development, see for instance Finlay (1990).



28 M. Matsubara and P. H. Alfredsson

1.1. Observation of secondary instability in curved or rotating boundary layer flows

One of the first studies to investigate the interaction of steady streamwise vortices
with travelling waves was made by Tani & Aihara (1969) who investigated the
development of Görtler vortices on a concave wall together with the generation of
two-dimensional TS-waves (for a recent review of Görtler vortices see Saric 1994).
Although this investigation was not very detailed they found that breakdown to
turbulence occurred first where the boundary layer was thickest, i.e. in the upwash
region where the flow velocity was low. Bippes & Görtler (1972) also did experiments
on flow along a concave wall using both flow visualization and hot-wire anemometry.
They detected a wavy type of instability with a streamwise wavelength of the order of
the spanwise scale of the original streamwise vortices. Hot-wire traces showed regular
sinusoidal fluctuations in the region of the wavy motion.

Flow visualization studies by Aihara & Koyama (1981) and later Swearingen &
Blackwelder (1987) showed the existence of another type of disturbance in the form of
horseshoe type vortices. The two types of instability, i.e. wavy and horseshoe, will in
the following be denoted sinuous (out-of-phase) and varicose (in-phase), respectively.

Masuda, Hori & Matsubara (1995) showed that in a boundary layer developing
along a rotating flat plate, longitudinal vortices due to a Coriolis instability form
and that these vortices are similar to Görtler vortices. They also visualized naturally
occurring secondary instability and observed the two different types of secondary
instability discussed above. By triggering the spanwise wavelength with roughness
elements they showed that a large spanwise wavelength of the primary instability
resulted in the varicose secondary instability, whereas a small wavelength was as-
sociated with the sinuous mode. This is also in accordance with results for curved
boundary layer flow by Li & Malik (1995), who used the PSE-formulation to solve
for the basic flow field as well as to carry out the stability analysis. They confirmed
the experimental results of Masuda et al. that the mode type selection depends on
the wavelength of the Görtler vortices.

There has been a number of other recent theoretical/numerical investigations of
secondary instability in Görtler flow. Yu & Liu (1991) carried out a linear analysis
of travelling waves, based on a nonlinear (streamwise independent) calculation of
the primary instability. The flow parameters as well as the spanwise wavelength were
chosen from the experiments by Swearingen & Blackwelder (1987). In the analysis the
cross-flow velocities were neglected and only the streamwise mean velocity field was
taken into account. They found that both sinuous and varicose modes were growing
although the former had the largest growth rate. Both the streamwise wavelength
and amplitude distribution were found to be in good agreement with the results of
Swearingen & Blackwelder (1987). It was also shown that the disturbance amplitudes
were largest in regions of local inflectional profiles (for the varicose mode normal
profiles at the upper part of the Görtler structure and for the sinuous mode the
spanwise profiles at each side of the upwash region).

DNS results by Liu & Domaradzki (1993) of one vortex pair in Görtler flow, where
the data of Swearingen & Blackwelder (1987) were used to set the amplitude of the
primary instability, made them conclude that the spanwise shear was governing the
onset of secondary instability. They also did a linear stability analysis which supports
this conclusion (see also the paper by Bottaro & Klingmann 1996).

1.2. Instability in rotating and curved channel flows

In rotating channel flow the governing parameters are the Reynolds number (Re =
Ubd/ν, where Ub is the bulk velocity, d is the channel width and ν is the kinematic
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viscosity of the fluid) and the rotation number (Ro = Ωd/Ub, where Ω is the system
angular velocity). For small values of Ro these parameters combine in such a way
that the important parameter for the primary instability is ReRo1/2, which is similar
to the Dean number in curved channel flow. The primary instability occurs when this
parameter exceeds a critical value (Lezius & Johnston 1976; Alfredsson & Persson
1989). When the streamwise vortices grow, they make the flow field three-dimensional
though the flow is still laminar. On top of the primary instability several types
of secondary instability have been observed. They include merging and splitting
of the primary vortex pairs, as well as streamwise travelling waves of two types,
usually denoted undulating and twisting motions. The twisting motion has a shorter
streamwise wavelength, of the same order as the spanwise wavelength of the primary
instability, whereas the undulating motion typically has a wavelength which is an
order of magnitude larger.

We should note that the instability in channel flows differs from that in boundary
layers, since the Reynolds number is constant in the channel flow case whereas it
increases in the downstream direction in the boundary layer case. In the boundary
layer case the flow will ultimately reach the turbulent state, whereas in channel flow
the disturbance level may saturate.

The stability of plane channel flow subjected to spanwise system rotation was first
studied experimentally by Alfredsson & Persson (1989). They visualized the twisting
secondary instability as well as the primary instability using reflective flakes in water.
Their study also shows splitting and merging of the longitudinal vortices; however
the twisting motion seems to be the most important element leading to turbulent
flow. Yang & Kim (1991) confirmed many of the experimental results of Alfredsson
& Persson through a DNS in a large computational domain where the disturbances
could develop freely. The twisting motion arises spontaneously in the simulation at
typical parameter values where they were also observed in experiments. They also
observed a longer wavelength disturbance although the twisting motion had the
largest growth rate. The twisting motion had a propagation speed of about 1.1Ub.

For the rotating channel flow three types of secondary instability, splitting and
merging of the longitudinal vortices, undulating and twisting motions, were also
predicted numerically by Finlay (1990, 1992) and Guo & Finlay (1991). The splitting
and merging were described as an Eckhaus instability, which would also play an
important role in selecting the spanwise wavelength of streamwise vortices, and
comparison with the data obtained by Alfredsson & Persson (1989) seemed to verify
these results. For the twisting motion, corresponding to that observed by Alfredsson
& Persson, the maximum growth rate was obtained for a streamwise wavelength of
1.5d. The wave speed was about 1.15Ub. For high Reynolds numbers modulation of
the twisting motion was observed leading to chaotic behaviour and finally to turbulent
flow (Finlay, 1992).

As indicated above there is a strong similarity between the flow in a curved channel
and in a rotating channel and so far there exist more experimental results for curved
channel flow. For instance the spatial development of the primary instability as well
as twisting and undulating motions have been studied by Matsson & Alfredsson
(1990, 1992, 1994). However only naturally occurring secondary instabilities were
studied and a mixture of the undulating and twisting motion was observed. Since the
frequencies of these two motions differ by an order of magnitude the two instabilities
were sorted through band-pass filtering of the measured velocity signals. The results
indicate that both the twisting and undulating secondary instabilities are related to
the low-velocity region between a vortex pair at the concave wall where the mean flow
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is strongly inflectional. Also, in the numerical simulation of curved channel flow by
Finlay, Keller & Ferziger (1988) both undulating and twisting motions were observed.
Linear stability analysis by Le Cunff & Bottaro (1993) who analysed the stability
properties of spanwise profiles obtained from numerical simulations showed that at
low Reynolds numbers only the sinuous mode was unstable whereas at high Re the
varicose mode could also become unstable.

1.3. Outline

In the present paper we will describe experiments in a rotating channel flow where
both the primary and secondary instability are triggered independently. We focus
on high-frequency disturbances and their breakdown. The experiments use hot-wire
anemometry to measure the time-dependent velocity field and the disturbances are
described in detail, regarding their spatial structure, growth rate and propagation
speed. Information of the later stages in the transition process is obtained from
frequency spectra of the streamwise velocity signal. It is shown that interactions
between various modes give rise to stochastic low-frequency disturbances which
probably are an important ingredient in the transition scenario. The paper is organised
as follows: §2 describes the experimental apparatus and measurement techniques, §3
contains the experimental results whereas §4 describes a theoretical model which is
used to explain some of the measured results but also allows us to estimate the
cross-stream flow field from only streamwise velocity measurements. These results are
also compared with previous DNS results and good agreement is obtained.

In many wall-bounded shear flows transition to turbulence has as a precursor the
development of streamwise oriented regions of high and low velocity and turbulence
breakdown is often due to the development of high-frequency (short-wavelength)
travelling waves on these structures. The present results may hence have a wider
applicability than just to describe transition in rotating channel flow.

2. Experimental set-up
2.1. Rotating channel and velocity measurement

The experiments were carried out in a straight channel on a rotating table (see figure 1),
previously used by Matsubara & Alfredsson (1996). A stationary air supply consisting
of a fan, a flow rate orifice meter and a 80 dm3 damping chamber distributed air
to the rotating system via a mechanical rotating seal. A perforated pipe distributed
the air into the settling chamber where two screens are mounted upstream of a 24:1
contraction. The 1 m long test channel has a width of 10 mm and a height of 290 mm
giving a 29:1 aspect ratio. A fine mesh at the downstream end of the channel reduces
upstream influence when the air leaves the channel during rotation. For flow noise
reduction, a muffler was installed before the settling chamber.

An automatic traversing mechanism enabled remote controlled measurement where
the hot wire(s) could be traversed in the wall-normal direction y and the spanwise
direction z. In the streamwise direction x the traversing mechanism was manually
moved. The rotating and the stationary systems were connected through a 12-channel
carbon slip ring device and a 4-channel mercury rotating coupling, which were utilized
for measurement signals and electronic power supply, respectively. The in-house built
hot-wire anemometer was placed on the rotating table and had 10 times amplification
for DC output and 100 times for AC output. These large amplification rates reduce
the influence of electronic noise from the slip rings and electronic devices and enabled
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Figure 1. Experimental set-up.

high-resolution measurements of the velocity fluctuations. The hot wire had a length
of 0.5 mm and a diameter of 2.5 µm.

The hot wire was calibrated against the fully developed parabolic profile in the
downstream part of the channel. Some calibrations were also made by changing the
velocity in the channel. Excellent agreement between the two methods was obtained.

2.2. Initial disturbances

In order to control primary and secondary instability two kinds of initial disturbance
were introduced as shown in figure 1. The vortices of the primary instability were
triggered by small roughness elements located at the unstable side close to the channel
inlet. The roughness elements were 0.5 mm high and 2 mm wide and had a length of
18 mm. They were spaced regularly in the spanwise direction a distance of 10 mm
apart that gives a non-dimensional spanwise wavenumber β = 2πd/λ = 6.28, where λ
is the spanwise wavelength (10 mm). This spanwise wavelength was empirically chosen
to minimize large-scale secondary instability such as undulation and splitting/merging
that can make it difficult to observe the short-scale secondary instability.

For secondary instability, periodic injection and suction through two holes on the
unstable wall at x = 350 mm were generated by small headphone speakers. The
disturbances could be generated to be either out-of-phase or in-phase. The holes had
a diameter of 1 mm and were separated by 4 mm in the spanwise direction. This
distance is comparable with the spanwise size of the low-velocity region. The central
roughness element was adjusted to be on the symmetry line between the holes so
that the time-periodic disturbance is either symmetric or antisymmetric with respect
to the centre of the upwash region. The intensity of the initial disturbance vinit/Ub

was of the order of 1% evaluated from the r.m.s. of the velocity normal to the
wall at the exit of the holes when measured with the hot wire without flow in the
channel. An estimate of the initial disturbance can also be found in figure 2 where the
disturbance 36 mm downstream of the generation point is shown for the out-of-phase
case (without channel rotation). Though the amplitude of u is 0.01%, the disturbance
is clearly antisymmetric in the spanwise direction and consists of inclined structures
in the (y, t)-plane as shown in figure 2(c,d). Most of the results presented in the
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Figure 2. Initial disturbance at x = 386 mm with forcing frequency F1 = 131 Hz: (a) r.m.s. of
streamwise velocity in (y, z)-plane, (b) velocity disturbance in (z, t)-plane at y = 3.3 mm, (c) velocity
disturbance in (y, t)-plane at z = −2.5 mm, (d) velocity disturbance in (y, t)-plane at z = 2.5 mm.
Contour spacing is 0.002% Ub for (a) and 0.005% Ub for (b) (c) and (d). Negative contours are
dashed.

following were obtained by using this amplitude of the initial disturbance; however
when determining the growth rate of the secondary instability the initial amplitude
was an order of magnitude smaller, in order to obtain a sufficiently long distance
where the disturbance could be viewed as linear.

Control of the generation of the secondary instability, as well as of the traversing
system and data sampling, was performed with a personal computer (Macintosh)
and a AD/DA conversion board (National Instrument). Forcing frequencies were in
the range 100–200 Hz and the signal from the DA output was amplified by a hi-fi
stereo amplifier. Typically when measurements of both forced and unforced cases
were made they were made sequentially, first with forcing and then without forcing
before moving the probe. Without forcing the sampling duration was typically 2.3 s
with 5.2 kHz sampling rate. In the case of a forced flow the sampling frequency was
chosen such that there were 40 sampling points within each period of the forcing
signal. Ensemble averages were formed from 300 periods of the signal and each y, z
cross-section consisted of 18 points evenly spaced normal to the wall and 26 points
(with increment 0.5 mm) in the spanwise direction (in total 468 measurement points).

2.3. Choice of experimental parameters

Observations of secondary instability in plane rotating channel flow were first made
by Alfredsson & Persson (1989) through flow visualization in water. They found a
short-wavelength travelling wave at Re = 590 and Ro = 0.084. The relevant parameter
for the instability (for small rotation numbers) is ReRo1/2 which for their case was
170. In the present apparatus the maximum rotation rate is 1.2 s per revolution
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and we chose Re = 1300 and Ro = 0.026 which gave ReRo1/2 = 210. These values
were chosen since it was the lowest Re for which it was possible to detect naturally
occurring secondary disturbances at the end of the channel. All results in the following
relate to the out-of-phase mode, since only this mode had a positive growth rate for
the present case.

3. Results and discussion
3.1. Basic flow

The Coriolis force instability in a rotating channel flow gives rise to counter-rotating
longitudinal vortices which interact with the pressure-driven Poiseuille flow. The
primary vortices were triggered by small roughness elements which generate a small
upwash flow from the unstable wall. This upwash flow develops into a pair of
counter-rotating longitudinal vortices. Although the flow disturbance is quite small
the large growth rate of this type of instability gives rise to large disturbances in
the streamwise velocity further downstream. The general development of the primary
disturbance without the influence of secondary instabilities shows first an exponential
growth, then a smaller growth until a maximum level is reached after which the
disturbance saturates at a lower level. Figure 3 shows contours of the time-averaged
streamwise velocity from three different streamwise positions corresponding to the
maximum level (x = 436 mm), and two positions in the saturated region. In the figure
the parabolic profile has been subtracted and the disturbance velocity normalized
with the bulk velocity Ub. Two different cases are shown: one in which only natural
secondary instability occurs, the other in which out-of-phase secondary instability is
triggered at x = 350 mm.

By x = 436 mm (figure 3a) the streamwise disturbance velocity reaches values
larger than 50% of Ub. A prominent feature is the localized low-velocity region close
to the unstable wall where the flow is rather symmetric around the centre of the
low-velocity region (z = 0). At x = 636 mm the disturbance field is close to that
at x = 436 mm although the large spanwise shear near both walls has decreased
significantly. At x = 836 mm the most prominent feature is that the flow is no
longer symmetric, probably due to the primary roll cells being affected by splitting or
merging of neighbouring vortex pairs.

In the case of the forced flow the initial position is almost no different to the
unforced case indicating that the initial disturbance at this stage can be regarded
as linear. Even at x = 636 mm there are only small differences, mainly occurring in
the low-velocity region where the forcing start to affect the mean flow, flattening the
velocity distribution in the spanwise direction at the centre of the channel. Further
downstream, at x = 836 mm, the mean flow is still symmetric unlike the asymmetric
shape without forcing. This observation indicates that the deterministic forcing of
the wavy motion prohibited the growth of another type of secondary instability
(merging/splitting).

A useful way to show the amplitude development of a stationary disturbance is to
evaluate the deviation from the undisturbed flow field. Matsson & Alfredsson (1992)
introduced a measure e defined as

e =

(
1

AU2
b

∫ ∫
A

(U −Uparabolic)
2dA

)1/2

. (3.1)

Figure 4 shows the change of e in the streamwise direction for the cases with and
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Figure 3. Time-averaged velocity field with parabolic profile subtracted. Without forcing:
(a) x = 436 mm, (b) x = 636 mm (c) x = 836 mm, with forcing F1 = 131 Hz: (d) x = 436 mm,
(e) x = 636 mm, ( f ) x = 836 mm. Contour spacing is 0.10Ub.

without forcing. The amplitude overshoots around 400 mm and is approximately
constant from 486 mm to 686 mm. At 838 mm a sudden increase in e is seen in the
case without forcing. This increase is related to the asymmetric appearance of the
flow field seen in figure 3(c).

Matsson & Alfredsson (1994) found that in curved channel flow, naturally occur-
ring twisting motion was only observed in the saturated region. In this paper the
development of the secondary instability is therefore investigated in the region where
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Figure 5. Relation between time-averaged flow field and secondary instability at x = 436 mm.
(a) distribution of mean streamwise velocity, (b) wall-normal gradient of mean streamwise velocity,
(c) spanwise gradient of mean streamwise velocity, (d) total r.m.s., (e) r.m.s. of streamwise velocity
for fundamental and all harmonic modes, ( f ) r.m.s. of random motion. Contour spacing is 0.10Ub/d
for (b) and (c) and 0.25% Ub for (d), (e) and ( f ).

the primary disturbance is close to saturated, i.e. where the mean flow is only changing
slightly in the streamwise direction. The mean flow in the saturated region is called
‘basic flow’ for secondary instability in this paper.

3.2. Structure of secondary instability

Figure 5 shows a comparison between the basic flow field and the occurrence of sec-
ondary instability. The basic flow field is shown in figure 5(a) in a three-dimensional
plot which emphasizes the narrow low-speed region and the constant-velocity region
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Figure 6. Structure of secondary instability at x = 436 mm: (a) r.m.s. of streamwise velocity,
(b) velocity disturbance in (z, t)-plane at y = 3.8 mm, (c) velocity disturbance in (y, t)-plane at
z = −0.5 mm, (d) velocity disturbance in (y, t)-plane at z = 0.5 mm. Contour spacing is 0.25% Ub

for (a) and 0.5% Ub for (b) (c) and (d). Negative contours are dashed.

to its sides. The normal and spanwise velocity gradients are shown in figures 5(b) and
5(c), respectively. The r.m.s. of the fluctuating u-velocity is shown in figure 5(d) and
clearly shows a two-peak distribution located in the region where strong gradients are
apparent in the mean velocity distribution and it is seen that the disturbance is corre-
lated to large values of the spanwise gradient rather than to the gradient normal to the
wall. Figure 5(e) shows the r.m.s. of the fundamental mode and its harmonics, obtained
from phase-averaged data whereas figure 5( f ) shows the random contribution.

In order to show the structure of the secondary instability figures 6–8 show the
time-resolved measurements at the three downstream positions for which the basic
flow field previously was shown. All figures show (a) the (y, z)-plane of the r.m.s.-
distribution of the disturbance, (b) a time resolved (z, t)-plane taken at y = 3.75 mm,
whereas (c) and (d) show time resolved (y, t)-planes taken at z = +0.5 mm and
z = −0.5 mm respectively. The t-axis in these plots was chosen such that its physical
length is approximately the same as the abscissa when the propagation velocity of the
disturbance is used to convert it to a length. In this way the figures give an almost
correct picture of the physical extent and inclination of the disturbance. The initial
disturbance was out of phase and this is clearly seen at 436 mm in figure 6(b), which
shows a well ordered antisymmetric pattern of high- and low-velocity regions. The
streamwise wavelength is approximately 17 mm, whereas the spanwise width of each
region is of the order of 2 mm. In the (y, t)-plane it is seen that the structures are
inclined in the streamwise direction with an angle of the order of 30◦. In figure 6(b–d)
the high- and low-velocity regions are similarly shaped with fore-and-aft symmetry
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Figure 7. Structure of secondary instability at x = 636 mm: (a) r.m.s. of streamwise velocity,
(b) velocity disturbance in (z, t)-plane at y = 3.8 mm, (c) velocity disturbance in (y, t)-plane at
z = −0.5 mm, (d) velocity disturbance in (y, t)-plane at z = 0.5 mm. Contour spacing is 1% Ub.

which indicates that at this stage the secondary disturbance can still be viewed as
linear.

Further downstream at x = 636 mm (figure 7) the disturbance structure is basically
the same although the disturbance amplitude is an order of magnitude larger. The
(z, t)-plane shows however a deformation of the structure where the leading edge (i.e.
the left part of the structure) seems to spread from the centreline. At x = 836 mm
(figure 8) the structure is less coherent since the influence of random modes starts
to become important, and it also seems that there is a difference between the high-
and low-speed regions which indicates that at this stage nonlinear effects starts to
affect the coherent structure. The (z, t)-plane shows that the spanwise spreading of the
structure continues, especially at the leading edge. The amplitude, however, has not
increased compared to x = 636 mm but the position of the peaks is shifted towards
the unstable wall.

During its downstream propagation the inclination of the structure with respect to
the wall is also changed. The inclination of the structure was estimated by correlating
the structure in the (y, t)-plane (at the z of maximum amplitude) with the function

sin(γy − ωt)

and maximizing the correlation with γ as a variable. The angle of the inclination to
the wall is then obtained as

θ = arctan

(
ω

cγ

)
(3.2)

where c is the propagation velocity of the disturbance. Figure 9 shows the inclination
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Figure 8. Structure of secondary instability at x = 836 mm: (a) r.m.s. of streamwise velocity,
(b) velocity disturbance in (z, t)-plane at y = 3.8 mm, (c) velocity disturbance in (y, t)-plane at
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Figure 9. Inclination (©) of secondary instability structure in (y, t)-plane. The inclination of the
corresponding disturbance without rotation is also plotted (4)

θ at different streamwise positions, and it is increasing in the downstream direction
from 16◦ to 33◦.

3.3. Phase velocity and growth rate

The propagation velocity of the secondary instability was obtained by measuring the
disturbance at two different x-positions (x = 528 mm and x = 536 mm) located
∆x = 8.0 mm apart in the streamwise direction. Because the secondary disturbance
was phase locked with the initial disturbance, it is possible to correlate the signals
to get the time shift (∆t) for maximum correlation. The measurements were made
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Figure 11. Disturbance energy growth and growth rate. (a) Energy growth: ©, one speaker forcing;
4, two speaker forcing. (b) ©, one speaker forcing, growth rate determined from data between
x = 436 mm and 636 mm; 4, two speaker forcing, growth rate determined from data between
x = 436 mm and 486 mm; •, data from Finlay (1990).

close to the peak region. The non-dimensional phase velocity was determined as
c = ∆x/(∆tUb). Figure 10(a) shows the resulting values of the phase velocity as a
function of the disturbance frequency. The streamwise phase velocity is normalized
with the bulk velocity and it is seen to be slightly higher. In figure 10(a) also the
mean velocity at the peak position upeak (normalized with Ub) is plotted. In general
the phase velocity is close to both the bulk velocity and streamwise velocity at the
peak of the fundamental disturbance. The velocity at the peak is almost constant
independent of frequency; however the phase velocity increases with frequency in
the low-frequency region and slightly decreases in the high-frequency region. The
maximum phase velocity is at ω = 4.8 which also corresponds to the frequency
for maximum growth rate, as will be shown later. The phase speeds observed here
are in close agreement with those reported by Finlay (1990, see his figure 8) and
Yang & Kim (1991), who for the present parameter range obtained values around
1.1Ub–1.15Ub.

The streamwise wavenumber of the disturbance was obtained as α = ω/c and
increases linearly with ω as shown in figure 10(b) (due to the almost constant phase
speed). At 150 Hz (ω = 4.8) this corresponds to a wavelength of 15 mm.

Figure 11(a) shows the streamwise energy growth of the secondary disturbance for
two different initial disturbances. In one case two speakers are used as shown in
figure 2, and in the other case only one speaker is used. In the one speaker case the
disturbance grows exponentially from x = 436 mm to 636 mm and then the growth
rate decreases slightly downstream. In the two speaker arrangement a higher initial



40 M. Matsubara and P. H. Alfredsson

10–2

10–3

10–4

10–5
(a)

E

400 600 800

x (mm)

10–4

10–6

10–8

10–10

(b)

400 600 800

x (mm)

10–12

Figure 12. Disturbance energy development of various components. (a) ×, total; ©, fundamental;
�, random, (b) ©, E(F1); ♦, E(2F1); 5, E(3F1); 4, E(4F1); ——– , E(F1); – – – – , ∼ E2(F1);
– · – · – , ∼ E3(F1); · · · · · , ∼ E4(F1).

amplitude was used and the region of linear growth is hence shorter. The growth rate
between x = 436 mm and 483 mm is close to the growth rate in the one speaker case.
Further downstream the growth rate becomes smaller and reaches its maximum at
x = 786 mm. For an exponentially growing disturbance the amplitude development
can be written as

A = A0e
σx/d

where σ can be estimated from the slope in figure 11(a) (note that this figure shows
the energy growth and the slope is therefore twice the value of σ).

In figure 11(b) the growth rates in the linear region for these two initial amplitudes
are shown as a function of the streamwise wavenumber α. In both cases the maximum
growth rate is at α = 4.2 (corresponding to ω = 4.8 or f = 150 Hz, which is close
to the frequency of the naturally occurring secondary instability). The growth rate is
larger than 0.1 in a fairly wide wavenumber range. Also shown in the figure are data
from Finlay (1990, see his figure 7) for ReRo1/2 = 174 and β = 6. As can be seen
good agreement between experiments and numerical simulation is found, especially
in the region of maximum growth.

3.4. Higher modes and nonlinearity

Figure 12(a) shows the energy growth of various components in the streamwise
direction. Here the initial disturbance has the same amplitude as in figure 2, i.e. the
forcing is of high amplitude. Three curves are shown, namely the overall r.m.s., the
r.m.s. of the fundamental frequency and the r.m.s. of the non-coherent or random
contribution. The streamwise velocity signals were ensemble-averaged with the phase
of the speaker signal as reference. The integrated disturbance energy was used as a
measure of its intensity. The total energy of the velocity fluctuation, Etotal , is defined as

Etotal =
1

λd

∫ λ/2

−λ/2

∫ d

0

u2
r.m.s.dydz, (3.3)

where ur.m.s. is the root-mean-square of the streamwise velocity. We denote the energy
at the fundamental frequency F1 by Efund and the energy associated with the harmon-
ics (2F1, 3F1, etc.) by Eharm.modes, which are determined by summing the contributions
from the forcing frequency component and its harmonic modes respectively. The
contribution to the energy from the random modes (Erandom) was estimated as follows:

Erandom = Etotal − Efund − Eharm.modes
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two hot wires separated by 3 mm in spanwise direction at x = 836 mm, y = 2.75 mm. (b) velocity
signals with forcing at several spanwise position, at x = 636 mm, y = 3.8 mm. Velocity reference is
arbitrary.

By viewing the spectra it is clear that the high-frequency contribution to the energy
is due to the fundamental and its harmonics, whereas Erandom mainly is related to
low frequencies and hence the undulating motion. In figure 12(a) the energy of the
fundamental is seen to decrease between 386 mm and 436 mm before it starts to
grow. Around x = 736 mm it saturates and decreases slightly further downstream. The
random mode, however, always shows an increase in the streamwise direction. The
harmonic modes have a larger growth rate than the fundamental mode (figure 12b).
The lines shown in the figure are obtained from the growth of the fundamental, and
by taking the second, third and fourth power of the fundamental the development
of the harmonics can be well estimated (the lines are shifted vertically to obtain the
best fit in the linear region). Hence the growth rates of the second, third and fourth
modes are two, three and four times as large as the fundamental one, respectively,
which is to be expected from a quadratic nonlinear process.

If a natural secondary instability is detected with two hot-wire probes, one at each
side of a low-velocity region, one observes that the signals are out of phase as shown
in figure 13(a). This shows that the secondary instability is a wavy mode. In the
forcing case, the out-of-phase signals are clearly shown by the phase locking with the
forcing as shown in figure 13(b). It is worth noticing that the signals on and close
to the spanwise symmetry line clearly show the existence of the first harmonic mode.
This result will be further discussed in §4.

As was discussed in connection with figure 12 the signal consists of both coherent
and non-coherent parts. The coherent part consists of both the fundamental and
its harmonics. Through filtering it is possible to obtain the spatial distribution of
the various harmonics as well as of the random contribution. Figure 14(a–c) shows
the energy distribution in the (y, z)-plane at x = 436 mm for the fundamental, the
first and second harmonics (figure 14d,e will be discussed later). The fundamental
has a symmetric distribution with two peaks close to y = 4 mm. The peaks of the
harmonics are further away from the unstable wall than the fundamental peaks. The
first mode has one large peak on the symmetry line, while even modes (fundamental
and second) contain two peaks symmetrically located around z = 0.

Energy distributions at x = 636 mm (figure 15) are similar in terms of two peaks
symmetrically in the even harmonic mode cases and one large peak at the centre for
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the first harmonic mode, though the peaks shift towards the unstable wall in all cases
and small peaks of the first harmonic mode appear besides the large peak at the centre.

Figure 16 shows the wall-normal position of the centre of energy that corresponds to
the peak position. The positions are shifted towards the unstable wall with streamwise
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Figure 16. Height of centre of energy for F = 131 Hz: ©, fundamental; ♦, first harmonic mode;
5, second harmonic mode; 4, third harmonic mode; �, random.

position for all modes except x = 386 mm. Though the position of the fundamental
mode is slightly higher than the random mode at the growing region between 436 mm
and 583 mm, it overlaps with the position of the random mode downstream. The height
of the positions of harmonic modes increases with the harmonic order independently
of the streamwise position.

3.5. In-phase disturbance

It seems clear from the natural disturbance growth that out-of-phase disturbances are
more unstable than in-phase disturbances, since this type is the dominant one. Even
when in-phase disturbances are forced in the experiment they never become dominant
except just downstream of the forcing. For the present conditions the growth rate of
the in-phase mode was negative which explains why the natural secondary instability
appears as out of phase.

3.6. Transition to turbulence

Even with forcing, the random part of the disturbance energy becomes dominant
in the downstream part of the channel (see figure 12). This is the first step towards
turbulent flow. The flow becomes random through the growth of natural disturbances
besides the forced one and their subsequent nonlinear interaction. Figure 17(a–d)
shows a number of frequency spectra which illustrate various features of this process.
In all figures the natural disturbance spectrum for the case of no rotation is also
shown at x = 836 mm as a reference. As can be seen the natural disturbances are
mainly found in the interval 100 to 200 Hz.

Figure 17(a) shows the frequency spectra of the natural disturbances at some
different downstream positions. In the rotating case it is seen how a rather sharp
peak around 150 Hz is growing in the downstream direction from x = 536 mm to
x = 686 mm and that at x = 836 mm it has started to broaden. Also, its higher
harmonics are clearly seen. A frequency band around 50 Hz is also detected at
x = 536 mm and 686 mm, which can be explained as modulation between the
modes of 150 Hz and 100 Hz. The low-frequency components around 30 Hz increase
strongly from x = 636 mm to 836 mm. These low-frequency components may stem
from modulation of various components between 100 Hz and 200 Hz.

In the case of forcing at F = 131 Hz sharp peaks at the forcing frequency and
its harmonic modes appear as shown in figure 17(b). The modulation between the
131 Hz and 155 Hz peaks (the latter is from the background noise) also gives a sharp
peak around 24 Hz.
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Figure 17. Power spectra of the streamwise velocity averaged over the measurement domain for
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This kind of modulation between peaks of short-wavelength disturbances is also
found in cases of 100 Hz forcing (figure 17c) and 172 Hz forcing (figure 17d). A
notable result is that energy in the low-frequency region (2 Hz to 50 Hz) in the
natural and 131 Hz forcing cases increases between x = 686 mm and 836 mm. This
energy increase contributes to the large growth of the random motion at x = 836 mm
seen in figure 12. The transition to turbulent flow stems at least partly from this
low-frequency band which gains energy through the modulation process between the
short-wavelength secondary instability and background noise.

4. A model of the secondary disturbance
In the previous section it was seen that the velocity signal is dominated by the

first harmonic mode at the spanwise centre of the low-velocity region (see figure 13a).
Figure 18 explains the mechanism of this phenomenon briefly. Assume that the dis-
tribution of the streamwise velocity around a low-velocity region is as in figure 18(a).
It is assumed that the secondary instability results in a wavy motion where the
streamwise momentum to first order is preserved. If a velocity sensor sensitive to the
streamwise velocity is located in the region of high shear it will record a signal which
is mainly the fundamental mode (figure 18b). On the other hand when the sensor is
located at the centre of the valley as shown in figure 18(c), higher harmonics can be
observed (figure 18d).

We propose a model of the secondary flow which is useful to explain some of the
observations in this experiment. It can also be used to approximate the normal and
spanwise velocity fields associated with the secondary flow.
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Figure 18. Relation between sensor position and velocity signal: (a) sensor at point of strong
spanwise shear, (b) velocity signal showing fundamental frequency for wavy motion, (c) sensor at
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If the measured streamwise velocity field is time-averaged we obtain the velocity
distribution ū(y, z). We now assume that the streamwise velocity acts as a passive
scalar for the wavy motion. At the position y = y0, z = z0 the streamwise velocity is
assumed to be of the form

u(t; y0, z0) = ū(η, ζ) (4.1)

where

η = y0 +
v(t)

ω
, ζ = z0 +

w(t)

ω
.

To first approximation the cross-stream velocities of the wavy motion are

v = v̂(y, z) sin(φ), w = ŵ(y, z) sin(ψ)

where

φ = ωt+ θv, ψ = ωt+ θw.

This model of the secondary instability motion states that fluid particle trajectories
are ellipses when projected on the (y, z)-plane. By assuming that the velocity can be
written in the form (4.1) it is possible to obtain values of v̂, ŵ, θv , θw for each (y, z)
pair. This is done through an optimization process in which the four parameters (v̂,
ŵ, θv , θw) are varied in a consistent way and a best fit to the measured time signal
is obtained. The optimization process was done by the Simplex search method in
the commercial software Matlab. This fitting is sensitive to experimental noise, so
that the 20 × 21 measurement points used (including the values at the walls) of the
mean streamwise velocity were first smoothed by using six Fourier modes in the
spanwise direction and eight Chebychev modes in the normal direction. Figure 19
shows comparisons between measured (u) and fitted (û) velocity fields in (z, t)-planes
at two streamwise positions. As can be seen the agreement is excellent.

Also, the wall-normal velocity v and the spanwise velocity w can be plotted from the
distributions of v̂ and ŵ and are shown in figures 20 and 21. The wall-normal velocity
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Figure 20. The estimated wall-normal disturbance velocity v: (a) r.m.s., (b) (z, t)-plane at y = 5.8 mm,
(c) (y, t)-plane at z = −1 mm, (d) (y, t)-plane at z = 1 mm. Contour spacing is 0.25% Ub for (a)
and 0.5% Ub for (b), (c) and (d).

is out of phase like the streamwise velocity shown in figure 6, while the spanwise
is symmetric around z = 0. Both distributions are concentrated around y = 6 mm,
and hence they are further from the unstable wall than the streamwise disturbance
distribution. The maximum v and w disturbance velocities are about 0.03Ub. Though
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Figure 21. The estimated spanwise disturbance velocity w: (a) r.m.s., (b) (z, t)-plane at y = 5.8 mm,
(c) (y, t)-plane at z = −1 mm, (d) (y, t)-plane at z = 1 mm. Contour spacing is 0.25% Ub for (a)
and 0.5% Ub for (b), (c) and (d).

(y, t)-planes of v do not show any specific inclination, the structure of w is inclined
at about 30◦ to the wall. This is similar to the inclination of the structure associated
with the streamwise velocity (see figure 6).

The physical cross-flow field consists of both the primary and secondary disturbance
velocities. For viewing an actual cross-flow field, the cross-flow fluctuations are added
to the cross-flow field given by a two-dimensional numerical calculation of the steady
saturated basic flow. For the basic flow field the cross-stream velocity components in
the normal and spanwise directions reach values of 0.10 and 0.06Ub, respectively. This
means that the cross-flow velocities associated with the twisting motion will affect the
cross-flow associated with the primary cross-flow instability significantly. Figure 22
shows the cross-flow at six different times during half of a cycle. The direction of the
upwash region is oscillating in the spanwise direction which is also seen in numerical
results of Finlay (1990) (in his figure 9, the plot order is opposite because it is a
sequence in x and not in t).

If the amplitude of the wavy motion is smaller than the spanwise scale of the profile
we can expand the expression for u around the original position in the cross-stream
plane (y0, z0). We do the expansion up to second order and for each frequency we
keep only the lowest-order terms

u = ū+
v̂

ω
sin(φ)

∂ū

∂y
+
ŵ

ω
sin(ψ)

∂ū

∂z

−1

4

[(
v̂

ω

)2

cos(2φ)
∂2ū

∂y2
+ 2

v̂

ω

ŵ

ω
cos(φ+ ψ)

∂2ū

∂y∂z
+

(
ŵ

ω

)2

cos(2ψ)
∂2ū

∂z2

]
. (4.2)
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Figure 22. Time sequence of the estimated cross-flow velocity distribution at x = 486 mm.
T is one period of the disturbance at F1 = 131 Hz.

This expansion shows that the first harmonic is related to the second derivative of ū,
whereas higher harmonics can be shown to be related to higher derivatives of ū. This
expression also shows directly that the growth rate of the higher modes in u should
be proportional to the harmonic order. It also shows that the odd harmonics will
have a maximum at z = 0 (since the even spanwise derivatives of ū have a maximum
at that position). From (4.2) we can also obtain estimates of both the fundamental
and the first harmonic of u, since we have obtained values of v̂ and ŵ (as well as for
θv and θw) previously from the fit of experimental data. Also, higher harmonics are in
principle possible to obtain although the measurement data do not everywhere allow
accurate determination of the higher derivatives.

In figures 14 and 15 both the directly measured (a, b) and estimated distributions
(d, e) obtained from (4.2) of the fundamental and first harmonic are shown. As can
be seen both the spatial distribution, with two peaks for the fundamental and one for
the first harmonic, and the amplitudes are well predicted by the model.

5. Summary
The present work maps the development of the twisting type secondary instability

towards turbulence in rotating channel flow. The primary instability is in the form
of counter-rotating streamwise vortices which are induced by a Coriolis instability
whereas the secondary instability consists of high-frequency travelling waves. It is
the first extensive experimental study where time-dependent secondary instability
is introduced in a controlled way on top of a primary stationary instability. The
characteristics of this secondary instability have been determined in detail. The
following points summarize the findings.
• Only the sinuous mode was found to be unstable. Even if the varicose mode was

triggered, it was damped and the resulting disturbance was sinuous.
• The amplitude distribution of the sinuous mode shows two distinct maxima at
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each side of the low-velocity (upwash) region between two vortices. The distribution
seems to be related to the spanwise gradient of the mean flow, i.e. its maximum
amplitude is found in the region of the spanwise inflection points of the basic flow.
• The phase speed of the disturbance is close to the local velocity at the amplitude

maximum, and hence also close to the local velocity in the inflectional region. This
together with the measured amplitude distribution strongly suggests that the secondary
instability is of inflectional origin.
• The growth rate of the secondary disturbance was determined for various fre-

quencies and it has a clear maximum for α ≈ 4 (ω ≈ 5). This wavelength (frequency)
is close to that which is observed for naturally developing flow.
• Higher harmonics of the secondary disturbance have a growth rate which is the

harmonic multiple of the growth rate of the fundamental (i.e. first harmonic has twice
the growth rate, second harmonic has three times the growth rate etc.)
• Some information on the later stages in the transition process is obtained from

frequency spectra of the streamwise velocity signal. It is shown that interaction
between various modes gives rise to stochastic low-frequency disturbances which
probably is an important ingredient in the transition scenario.
• A theoretical model is described which allows the determination of the cross-

stream disturbance flow field under the assumption that fluid particles move in
the form of an ellipse during a period of the disturbance. By assuming that the
streamwise momentum is carried as a scalar by the disturbance flow field the cross-
stream disturbances may be obtained from the measured streamwise velocity. The
results show good qualitative correspondence to results from numerical simulations.
• An expansion of the streamwise velocity in terms of the cross-flow disturbance

component and derivatives of the mean flow gives the possibility of estimating the
higher harmonics. Good agreement for the first harmonic was obtained.
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